101 research outputs found

    Fungal Secretome Database: Integrated platform for annotation of fungal secretomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi secrete various proteins that have diverse functions. Prediction of secretory proteins using only one program is unsatisfactory. To enhance prediction accuracy, we constructed Fungal Secretome Database (FSD).</p> <p>Description</p> <p>A three-layer hierarchical identification rule based on nine prediction programs was used to identify putative secretory proteins in 158 fungal/oomycete genomes (208,883 proteins, 15.21% of the total proteome). The presence of putative effectors containing known host targeting signals such as RXLX [EDQ] and RXLR was investigated, presenting the degree of bias along with the species. The FSD's user-friendly interface provides summaries of prediction results and diverse web-based analysis functions through Favorite, a personalized repository.</p> <p>Conclusions</p> <p>The FSD can serve as an integrated platform supporting researches on secretory proteins in the fungal kingdom. All data and functions described in this study can be accessed on the FSD web site at <url>http://fsd.snu.ac.kr/</url>.</p

    SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the full genome sequences of <it>Saccharomyces cerevisiae</it> were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed.</p> <p>Results</p> <p>The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion.</p> <p>Conclusion</p> <p>The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site <url>http://genomebrowser.snu.ac.kr/</url>.</p

    A Context Retrieval Method for Context-awareness Using Ontology-Based Approach in Internet of Things Environments

    Get PDF
    A context-aware system is required for providing context-aware services to users in the Internet of things (IoT) environment. It consists of three primary tasks: gathering context data, abstracting the collected data, and providing services to users. In IoT environments, context data are generated by a large number of sensors, and this context data are part of the context-awareness services provided to the users. When the context-aware system provides context-aware services with their service descriptions, it is necessary to process the data gathered by abstracting and contextualizing them. Generally, the context-aware system encounters a problem in that the context representations between contextualized sensor data and their related service descriptions do not match well. We herein propose a context retrieval method that facilitates in obtaining context information for the context-aware system in IoT environments. The context-aware system communicates with an ontology module that handles input data described in a set of universal resource identifiers, as a triplet. The ontology module resolves each representation request from the context-aware system. The proposed method provides an ontology-based mapping procedure for the context representation problem described above

    Fungal cytochrome P450 database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytochrome P450 enzymes play critical roles in fungal biology and ecology. To support studies on the roles and evolution of cytochrome P450 enzymes in fungi based on rapidly accumulating genome sequences from diverse fungal species, an efficient bioinformatics platform specialized for this super family of proteins is highly desirable.</p> <p>Results</p> <p>The Fungal Cytochrome P450 Database (FCPD) archives genes encoding P450s in the genomes of 66 fungal and 4 oomycete species (4,538 in total) and supports analyses of their sequences, chromosomal distribution pattern, and evolutionary histories and relationships. The archived P450s were classified into 16 classes based on InterPro terms and clustered into 141 groups using tribe-MCL. The proportion of P450s in the total proteome and class distribution in individual species exhibited certain taxon-specific characteristics.</p> <p>Conclusion</p> <p>The FCPD will facilitate systematic identification and multifaceted analyses of P450s at multiple taxon levels via the web. All data and functions are available at the web site <url>http://p450.riceblast.snu.ac.kr/</url>.</p

    IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data.</p> <p>Results</p> <p>The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs.</p> <p>Conclusion</p> <p>The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site <url>http://www.imgd.org/</url>.</p

    Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes

    Get PDF
    Background: Cytochrome P450 proteins (CYPs) play diverse and pivotal roles in fungal metabolism and adaptation to specific ecological niches. Fungal genomes encode extremely variableThis research has been supported by the USDA Agriculture and Food Research Initiative Competitive Grants Program (Grant no. 2010-65110-20488). The work in Lees lab has been supported by the National Research Foundation of Korea (2012–0001149 and 2012–0000141) and the NextGeneration Bio-Green 21 Program of Rural Development Administration in Korea (PJ00821201).OAIID:oai:osos.snu.ac.kr:snu2012-01/102/0000003441/6SEQ:6PERF_CD:SNU2012-01EVAL_ITEM_CD:102USER_ID:0000003441ADJUST_YN:YEMP_ID:A003535DEPT_CD:5321CITE_RATE:4.073FILENAME:μ²¨λΆ€λœ 내역이 μ—†μŠ΅λ‹ˆλ‹€.DEPT_NM:농생λͺ…곡학뢀EMAIL:[email protected]_YN:YCONFIRM:

    Contribution of Natural Inhibitors to the Understanding of the PI3K/PDK1/PKB Pathway in the Insulin-mediated Intracellular Signaling Cascade

    Get PDF
    The critical initial steps in insulin action include phosphorylation of adapter proteins and activation of phosphatidylinositol 3-kinase (PI3K). One of important components in this process is a protein called Akt/protein kinase B (PKB). The work of numerous different researchers indicates a role of PKB in regulating insulin-stimulated glucose uptake. The crucial role of lipid second messengers in PKB activation has been dissected through the use of the PI3K-specific inhibitors wortmannin and LY294002. Receptor-activated PI3K synthesizes the lipid second messenger PtdIns[3,4,5]-trisphosphate, leading to the recruitment of PKB to the membrane. Membrane attachment of PKB is mediated by its pleckstrin homology domain binding to PtdIns[3,4,5]-trisphosphate or PtdIns[3,4]-bisphosphate with high affinity. Activation of PKB alpha is then achieved at the plasma membrane by phosphorylation of Thr308 in the activation-loop of the kinase domain and Ser473 in the carboxy-terminal regulatory region, respectively. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) is responsible for T308 phosphorylation. The usage of specific inhibitors and natural compound has significantly contributed to investigate the molecular mechanism of PI3K/PDK1/PKB signaling pathway, leading to the putative therapeutics benefits of patients. This review focuses on the contribution of natural inhibitor or compound in our understanding of the mechanism by which insulin induces, especially in PI3K/PDK1/PKB signaling

    Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae

    Get PDF
    The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, Ξ”Mohox3 and Ξ”Mohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the Ξ”Mohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. Ξ”Mohox4 and Ξ”Mohox6 showed significantly reduced conidium size and hyphal growth, respectively. Ξ”Mohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in Ξ”Mohox2, in which no conidia formed. Ξ”Mohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, Ξ”Mohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives
    • …
    corecore